
Polymer Bulletin 13, 51-56 (1985) Polymer Bulletin 
�9 Springer-Verlag 1985 

Viscoelastic Properties 
Interrelations Between Relaxation Distribution Functions 
and Apparent Activation Energy of Flow 

M.-J. Brekner, H.-J. Cantow, and H.A. Schneider 

Institut for Makromolekulare Chemie der Universit&t Freiburg, Hermann-Staudinger-Haus, 
Stefan-Meier-Strasse 31, D-7800 Freiburg i. Br., Federal Republic of Germany 

Herrn Prof. Dr. R. Bonart zu seinem 60. Gebuttstag 
herzlichst gewidmet 

Summary 

Starting from both the three-dimensional diagram of viscoelastic properties in the reci- 

procal temperature - log frequency - space and the t ime-temperature interrelation via appar- 

ent activation energy of flow, the possibility of theoretical interpretation of the isochrona] 

behaviour is demonstrated, in analogy to the isothermal one. The determinative apparent 

activation energy of local flow is related with the relaxation spectra over the entire range 

of val idi ty of the t ime-temperature superposition principle. Thus a theoretical background 

is offered for the method recommended before for the evaluation of the apparent activation 

energy of flow, which is applicable to calculate both isotherm and isochrone shift factors. 

The reciprocal re laxat ion- temperature  spectrum 
1) As it has been pointed out within the range of val idity of the t ime-temperature 

superposition principle the temperature dependence of viscoelastic functions tacidly includes 

the supposition that all relaxation times are governed by the same temperature law. It has 

been shown that this temperature dependence can be described in terms of EYR[NC's transit- 

ion state theory, assuming at the same time a temperature variant 2) apparent activation 

energy of flow 0p(T)10p(T o) exp { I /T j f I /T = [ E ( T ) / R ] d ( I / T ) }  . ( l ) 

o 
In equ. (1) P specifies the attr ibution of the respective relaxation time, 0, to a given individ- 

ual relaxation process, P. 

By definition isochrone curves comprise viscoelastic properties due to relaxation processes 

at different temperatures taking place, however, in the same time interval. At any given 

temperature the relaxation time of the slowest one of the possible processes wi l l  be equal 

than to the reciprocal frequency of measurement. Consequently, for a given frequency each 

relaxation process f inally wil l  become the slowest one relaxing to half of its stored stress 

at a specific temperature 0p(T) : Op, : I/t0 o ( 2 ) 

P' represents this slowest process. By substituting 0p(T) from equ. ( I ) ,  equ. (3) results show- 

ing the t ime variable, 0p, ,  at the left  and the temperature variable, Tp,, at the right hand 
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l/V o 
0p(T o) = ( l /c0 o) exP{l/T [ E ( T ) / R ] d ( I / T ) }  ( 3 ) 

The s t a t emen t  of equ. (3) means that  each relaxat ion t ime  correponds with a precise 

t empera tu re .  This t empera tu re ,  Tp, ,  can be defined as the relaxat ion t empera tu re  of the  

choosen frequency of measurement ,  to o.  It will be specified, therefore ,  as Tp(t0o). In condit ions 

of measurements ,  according to equat ion (3), the slowest relaxat ion process will be charac te r i zed  

by Tp, =T O and 0p, = l / t 0  o. The above comprehension of a t t r ibu t ing  relaxat ion processes,  

t imes  and tempera tures ,  respectively,  is i l lustrated by mutual  in terdependences  + 0p(To)  

Accordingly, one has to distinguish be tween  these three  distr ibution funct ions ,  P Z 

tha t  of the relaxat ion processes,  hr(P),  tha t  of the relaxat ion t imes,  Fr[Op(To)] , ~a 
Tp(c0 o) 

and tha t  of the relaxat ion temperatures~ Fr[Tp(C0o)]. As indicated by " r "  all 

these funct ions have to be t empera tu re  and density reduced. Star t ing with the supposition 

imposed by the t i m e - t e m p e r a t u r e  superposition principle - tha t  all relaxat ion processes and 

also all s tress relaxations,  consequently,  have to be identical  independently on the type of 

the  distr ibution funct ion considered - the following relat ions have to be valid 

l o fo 
hr(P)d(P)  = F r [ e p ( T o ) ] d e  = F r [Tp(mo) ]dT  ( 4 ) 

P = l  0p=O T p = o ,  

Taking into account, however, the practice of plott ing viscoelastic functions either using 

the logarithmic t ime or the reciprocal temperature scale, the following distribution functions 

seem to be more suitable 

I I ~ I ~ h ( P ) d ( P ) =  H r [ 0 p ( T ~  : -o P : 1 r _~o Hr [Tp( tO~  ( 5 )  

Hr[0p(To)]  is now the T O refered logarithmic relaxation t ime spectrum, whilst Hr[Tp(mo)]  is 

the t0 related reciprocal relaxation temperature spectrum o 

Hr[Tp(t0o)] : Fr[Tp(0Jo)]Tp2 ( 6 ) 

= T according to the supposed tempe- Substituting (dln0)To in equ. (5)by [E(Tp)IR]d(tlT)IT P o 
rature dependence in equ. (3), equation (7) results 

Hr[Tp(a~o)]d(l/T) = [E(Tp)/R]Hr[ep(To)I dO/T) ( 7 ) 
o o Op(T o) = f(~0o, Tp) 

Consequently, if both the distribution functions are related with the same relaxation process 

P, the following correlation wi l l  be valid 

I Hr[Tp(~% )] ] = E(Tp) /R  ( 8 ) 
Hr[O p(To)]  p 

It is evident that equ. (8) is generally valid and applies to the slowest relaxation process, 

P', tOO 
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H r (Tp,) [Hr  (To)] co 
o = E(To)/R ( 9 ) 

Hr (0p,) [Hr  (1/coo)] T 
o 

Related to the mastersurface in the reciprocal tempera tu re - log  frequency space this 

condit ion applies to any point on this surface, defined as fr(coo ~ To), fr  being the chosen 

viscoelastic function l )  

S i g n i f i c a n c e  of  the  m e t h o d  of  e v a l u a t i o n  of  the  a p p a r e n t  a c t i v a t i o n  e n e r g y  

of  f l o w  1) 

The problem which usually concerns al l  methods is the physical meaning of any implicated 

quant i ty.  In this context the analyse of equ. ( I0 )  which has been recommended before for 

the evaluat ion of the apparent act ivat ion energy of f low I)  wi l l  be performed now 

a(log G')coo/a(l IT) ~ 
= E(To) /2 .303R ( 10 ) 

a(log G') T /a(logco) o 
O 

Mathematical ly this a(G'r)co / a ( l / T )  ~ 
o = E(T o ) / 2 . 3 0 3 R  ( 11 ) 

is equivalent  to a (G,r) T / a(logco)o 
O 

Taking into account that, in the first approximation, the differentiat ion of the reduced 

storage modulus, G' r, with respect to the logarithmic frequency is equivalent to the relaxation 

t ime spectrum [o~ 
G'r(COo, T O ) ~  Hr[0(To)]  d l n 0  , ( 12 ) 

1/coo 

equ. (13) may be formulated, finally 

a(G'  )~ / [2.303a(logco)o]~ {Hr[0(To)]} 0 (To) = l/c0 ~ r 1 ~ 

: ( l / coo ) {F r [0 (To ) ] }O(To ) :  i/co ~ : [Hr( I /coo) ]To ( 13 ) 

3) The second and third approximations of relat ion (12) due to Williams and Ferry , 

and Tschoeg] 4) 5) respectively, wi l l  not be analyzed here. According to Ferry, however, 

the approximat ion in equ. (13) can be wr i t ten also in form of the equal i ty in (14), "A" being 

a constant for a given relaxat ion process 

Hr[  (To)] : A 8 (G'r) T I a(logco) o ( 1 4 ) 
o 0 (T o) = I/c0 o 

In order to make the connection of these relations with equ. (9) evidently i t  has to be stated 

only that condit ion 0(T o) = I/c0 o means in fact the di f ferent iat ion related to the slowest 

relaxat ion process occuring at a certain frequency, coo (see equ. (2)) .  

The solution of the system of relations (13), ( I I )  and (9) yields 

8(G'r)co / 8 ( I / T )  o ~ H r[TP(coo)] = [Hr(To)]co ( 15 ) 
O O 
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Using equ. ( I4)  instead of (13) approximation ( I5)  becomes 

Aa(G'r)o) / a ( I / T ) o  = Hr[Tp(~o) ] = [Hr(To)]~ ( 16 ) 
o o 

Therefore i t  is evident that equation ( I0)  actually is equivalent to relation (9). That 

means that the apparent activation energy of flow according to the recommended method 

I)  really is given by the ratio of the distribution functions. In practice the distribution funct- 

ions are substituted by experimentally accesible quantities, i. e. the slopes of the respective 

isochrone and isotherm viscoelastic curves. It is also incontestable that the method is applic- 

able to any viscoelastic function because they all are connected with the distribution functions. 

In order to demonstrate the capacities of the above defined reciprocal relaxation tempera- 

ture spectrum Hr[Tp(~0o)] in describing the isochrone behaviour of linear viscoelastic bodies, 

some fundamental equations are presented in the following. 

I s o c h r o n a l  v i e w  o n  v i s c o e l a s t i c  f u n c t i o n s  

First i t  wil l  be evidenced that besides from isothermal distribution functions, experiment- 

ally accessible viscoelastic data can be derived also from the isochronal ones. Starting with the 

well known isothermal relation, (17), which relates the storage modulus with the relaxation 

t ime spectrum, Hr, and substituting according to equations (3) and (g) 8p(To)~ (d In 0)To 

and Hr[Op(To)], respectively~ the isochronal relation, (18), can be formulated 

i 
~o [0Jo0p(To)] 2 

G'r(0~o,To) = G'roo + Hr[0p(To)] d In O ( 17 ) 
_oo 1 + [O~o0p(To)] 2 

I I /T  o 
exp{ 2 �9 [E(T)/R] d( l  IT)}  

i 
~ I /Tp '  

G'r(U}o,T o) = G' + Hr[Tp(~0o)] d ( l / T )  
r~~ o ( l i T  

I + e x p { 2 "  l O [ E ( T ) / R ] d ( I / T ) }  
l /Tp '  ( l g ) 

This relation can be simplified considering the storage modulus in the terminal zone only, 

when the act ivation energy of flow, E(T), is a constant 

i 
oo e x p [ 2 E / R ( l / T  o -  l / T p ) ]  

G'r(Wo,To) = G' + Hr[Tp(Wo)] d ( l / T )  ( 19 ) 
roo o l + e x p [ 2 E / R ( l / T  o -  l / T p ) ]  

Consequently, i t  is evident that any frequency function turns by substitution into a tempe- 

rature function. This temperature function accomplishes the same role as before the frequency 

function. The isochronal distribution function, however, is divided by the temperature function 

into a relaxed and an unrelaxed part. The temperature functions for different constant act ivat-  

ion energies of flow, E, and for different temperatures of measurement, To' and To", are 

plotted in Figure I for il lustration. I t  is evident that the shape of the function is not depending 

on T o. In a similar way, the isochronal distribution function H r can be related with the loss 

modulus or with any other viscoelastic function too. 
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Fit~ure 1: Temperature functions for different constant E and for To' and T o", respectively 

Considering the Newtonian flow on macroscopic scale, than, in isochronal terms equat- 

ion (19) has to be extrapolated to I / T  §  According to experimental findings E(T) becomes 

temperature independent in this region. Consequently, the following relations may be formul- 

ated for the zero shear viscosity and the loss modulus, respectively 

i o nro(To)  = exp ( E / R T  o) [ ( l /m  o) exp (E /RTp) ]Hr [Tp(a~o) ]  d ( l / T p )  = K e• ( E / R T  o) ( 20 ) 
o 

ln [nro(To)]  = In K + E / R T  ~ ( 21 ) 

ln[G"ro(C0o,To)] = ln[c0or~ro(To)] = In K + In ~o + E/RTo ( 22 ) 

As i t  has been already supposed 6) i t  is confirmed now by equ. (22) that in the Newton- 

ian region of flow the slope of In G" versus I / T  is related directly with the apparent ro 
activation energy of flow. This statement is also in accordance with the proposed method 

I)  for the determination of activation energy. At the same time both the proposed methods 

and equation (22) evidence that the slope of In G" versus lnc0 has to be equal to unity. ro 

[n conclusion all isochronal considerations, the method for the determination of activation 

energy included, result in a consistent concept of analyzing viscoelastic properties in the 

reciprocal temperature-  log frequency space. This statement may be understood also as an 

impuls for further development of isochronal measurements, especially in the region of con- 

stant activation energy of flow. In a further step invariant plots of viscoelastic functions 

may be realized by plott ing versus E/RT. Application of this approach for relaxation processes 

with temperature-variable activation energies wi l l  be discussed in a following paper. 
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